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Schizophrenia Working Group of the PGC, 2014 Nature
Genome annotation, 

e.g. H3K27ac in Cortex

How much of the genetic signal falls in 
this genome annotation?

Common approach: e.g., Hu et al. 2011 AJHG, Maurano et al. 2012 Science, Trynka et al. 2013, Pickrell 2014 AJHG, 
Kichaev et al. 2014 PLoS Gen, Gusev et al. 2014 AJHG, Pers et al. 2015 Nat Commun, Marbach et al. 2016 Nat Methods, 
Shooshtari et al. 2016 bioRxiv, Sarkar et al. 2016 bioRxiv, Lu et al. 2016 bioRxiv, Iotchkova et al. 2016 bioRxiv



Schizophrenia Working Group of the PGC, 2014 Nature
Genome annotation, 
e.g. H3K27ac in Liver

How much of the genetic signal falls in 
this genome annotation?

Common problems: polygenicity & LD



Schizophrenia Working Group of the PGC, 2014 Nature
Genome annotation, 
e.g. H3K27ac in Liver

How much of the genetic signal falls in 
this genome annotation?

Our approach: leverage polygenicity & LD by fitting a random effects 
model from summary statistics.



Random effects models for GWAS 
leverage polygenicity

• Common approach: Identify causal SNPs, look for 
patterns

• Random effects: Model SNP effects as random, look 
at properties of the distribution



Random effects models for GWAS 
leverage polygenicity

• Common approach: Identify causal SNPs, look for 
patterns

• Random effects: Model SNP effects as random, look 
at properties of the distribution

• Variance (SNP-heritability)
• Correlation across two traits (genetic correlation)
• Category-specific variance (partitioning SNP-h2)

Yang et al. 2010 Nat Genet
Yang et al. 2011 Nat Genet
Lee et al. 2012 Bioinformatics

Lee et al. 2012 Nat Genet
Vattikuti et al. 2012 PLOS Gen
Davis et al. 2013 PLOS Genet

CDG-PGC 2013 Nat Genet
Chen et al. 2014 Hum Mol Gen
Gusev et al. 2014 AJHG



Random effects model for genetics

Quantitative 
phenotype



Quantitative 
phenotype

Genotype at SNP j. 
(0/1/2 valued, 
standardized to 
mean 0, variance 1.)

Random effects model for genetics



Quantitative 
phenotype

Genotype at SNP j. Noise and environmental 
factors. Random, mean-0, 
independent across 
individuals.

Random effects model for genetics
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Quantitative 
phenotype

Genotype at SNP j. Noise and environmental 
factors. 

Effect size of SNP j. Random 
with mean 0. Variance depends 
on which category it belongs 
to.

Random effects model for genetics



Quantitative 
phenotype

Genotype at SNP j. Noise and environmental 
factors. 

Effect size of SNP j. Random 
with mean 0. Variance depends 
on which category it belongs 
to.

Random effects model for genetics



This model has been used to 
identify cell types previously

Gusev et al. 2014 AJHG; see also Lee et al. 2012 Nat Genet and Davis et al. 2013 PLoS Genet

A challenge: sample size



Stratified LD score regression fits this model 
from summary statistics

Why?
• For meta-analyses, no one has all of the genotypes.
• Lots of publicly available summary statistics.
• Existing methods are computationally expensive.

Finucane*, Bulik-Sullivan*, et al. 2015 Nature Genetics



• In a GWAS, test for positive marginal correlation.

• Reflects causal effects of SNP j and SNPs in LD with 
SNP j



Finucane*, Bulik-Sullivan*, et al. 2015 Nature Genetics



To estimate        : 
• Estimate LD Scores from a reference panel.
• Regress chi-square statistics on LD Scores.

Details:
• Significance via jackknife
• Weighted regression

Finucane*, Bulik-Sullivan*, et al. 2015 Nature Genetics



Chi-square is linear in LD score

With only one category:

[Bulik-Sullivan et al. 2015 Nat Genet]



Chi-square is linear in LD score

SCZ working group of the PGC 2014 Nature (data) 
Bulik-Sullivan et al 2015 Nat Genet (LD Score plot)

With only one category:

[Bulik-Sullivan et al. 2015 Nat Genet]
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Finucane*, Bulik-Sullivan*, et al. 2015 Nature Genetics



Genome annotation of 
interest

(e.g., DHS peaks in liver)

Summary statistics for 
trait of interest

Other annotations to 
control for:

• Exons
• Promoters
• Repressed regions
• Conserved regions
• Etc…

Stratified LD score regression

Heritability enrichment of the 
annotation of interest,

controlling for other annotations

Finucane*, Bulik-Sullivan*, et al. 2015 Nature Genetics



Genome annotation for
Central Nervous System

Summary statistics for 
Schizophrenia

Other annotations to 
control for:

• Exons
• Promoters
• Repressed regions
• Conserved regions
• Etc…

Stratified LD score regression

P-value for Central Nervous System 
enrichment for Schizophrenia

Finucane*, Bulik-Sullivan*, et al. 2015 Nature Genetics



Genome annotation for
Cardiovascular System

Summary statistics for 
Schizophrenia

Other annotations to 
control for:

• Exons
• Promoters
• Repressed regions
• Conserved regions
• Etc…

Stratified LD score regression

P-value for Cardiovascular system 
enrichment for Schizophrenia

Finucane*, Bulik-Sullivan*, et al. 2015 Nature Genetics



Genome annotation for
Liver

Summary statistics for 
Schizophrenia

Other annotations to 
control for:

• Exons
• Promoters
• Repressed regions
• Conserved regions
• Etc…

Stratified LD score regression

P-value for Liver
enrichment for Schizophrenia

Finucane*, Bulik-Sullivan*, et al. 2015 Nature Genetics



S-LDSC identifies relevant tissues
• 10 annotations using histone marks from ENCODE/Roadmap
• 17 phenotypes with publicly available GWAS summary statistics

Finucane*, Bulik-Sullivan*, et al. 2015 Nature Genetics



We can also use gene expression

• Genome annotation of interest:
• Rank genes by specific expression
• Take top 10% of genes
• Add 100kb window

• Annotation data: 
• GTEx project
• Public dataset from Franke lab

• GWAS data: 48 GWAS, avg N =86,850
• Public data
• Brainstorm consortium
• UK Biobank

Finucane et al. 2018 Nature Genetics



(Large dot = FDR < 5%)

We can also use gene expression data

Finucane et al. 2018 Nature Genetics



Zooming in Part 1: the brain

Almost every CNS 
annotation passes FDR < 5%.

Schizophrenia, multi-tissue analysis

Finucane et al. 2018 Nature Genetics



Differential expression within brain 
differentiates brain regions

Correlations among 
brain region LD scores:
Multi-tissue analysis

Correlations among 
brain region LD scores:
Within-brain analysis

Data: GTEx Finucane et al. 2018 Nature Genetics



Differential expression within brain 
differentiates brain regions

Data: GTEx, Pers et al. 2015 Nat Commun

Schizophrenia, multi-tissue analysis Schizophrenia, GTEx brain only

Data: GTEx

Finucane et al. 2018 Nature Genetics



Finucane et al. 2018 Nature Genetics

Potential confounder: cell type composition

Differential expression within brain 
differentiates brain regions



Differential expression within brain 
differentiates brain cell types

Finucane et al. 2018 Nature Genetics



Zooming in Part 2: Blood/Immune

Rheumatoid arthritis, multi-tissue analysis
Lymphocytes

Mononuclear leukocytes

Blood cells

Finucane et al. 2018 Nature Genetics



Mouse microarray, 292 immune cell types
[Data: ImmGen Consortium]

Human ATACseq, 13 cell types spanning hematopoiesis
[Data: Corces et al.]

Finucane et al. 2018 Nature Genetics
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